SCORE: ____/35 POINTS

- 1. You may use the result of exercise 26 in section 4.4 without proving it.
- 2. You may NOT use the results of example 4.2.3 in section 4.2 unless you write formal proofs of them.
- 3. You may use the property that all integers are either even or odd, but NOT the property that consecutive integers have opposite parity.

Find the values of (-73) div 8 and (-73) mod 8. <u>Justify your answers very briefly.</u> You do NOT need to write a formal proof.

SCORE: ____/4 PTS

 $(2) -73 = 8 \times (-10) + 7$ (-73) div 8 = -10 and (-73) mod 8 = 7

One of the following statements is true and one is false.

Write a formal proof for the true statement, and show that the false statement is false.

SCORE: _____ / 12 PTS

- [a] For all integers a and n, if $a \mid n^2$ and $a \le n$, then $a \mid n$.
- [b] For all integers a and n, $a \mid n$ is necessary for $a^2 \mid n$.

[a] is false.

Let a = 4 and n = 6. $4 \mid 36$ and $4 \le 6$, but $4 \nmid 6$. GRADED BY ME

[b] is true.

The statement can be reworded as "For all integers a and n, if $a^2 \mid n$, then $a \mid n$ ".

PROOF:

Let a and n be particular but arbitrary integers such that $a^2 \mid n$.

So,
$$n = ka^2 = (ka)a$$
 by def'n of $|$,

where $ka \in Z$ by closure of Z under \times .

So, $a \mid n$ by def'n of \mid .

SCORE: ____/4 PTS

An integer n is prime if and only if n > 1 and for all positive integers r and s, if n = rs then r = 1 or s = 1.

GRADED BY ME

Write a formal proof for the statement

SCORE: ____ / 15 PTS

"For all integers n, $n^2 - n - 3$ is odd"

PROOF:

- Let n be a particular but arbitrary integer.
- n = 2q or n = 2q + 1 by QRT.
- CASE 1 (n = 2q):

$$n^2 - n - 3 = 4q^2 - 2q - 3 = 2(2q^2 - q - 2) + 1$$

where $2q^2 - q - 2 \in Z$ by closure of Z under \times and -.

So, $n^2 - n - 3$ is odd by def'n of odd.

CASE 2 (n = 2q + 1):

$$\frac{n^2 - n - 3}{n^2 - n - 3} = \frac{4q^2 + 4q + 1 - 2q - 1 - 3}{1 + 4q + 1 - 2q - 1 - 3} = \frac{4q^2 + 2q - 3}{1 + 4q + 1 - 2q - 1 - 3} = \frac{2(2q^2 + q - 2) + 1}{1 + 4q + 1 - 2q - 1 - 3}$$

wher $\Omega q^2 + q - 2 \in Z$ by closure of Z under \times and -

So, $n^2 - n - 3$ is odd by def'n of odd.

So, for all integers n, $n^2 - n - 3$ is odd.